3.229 \(\int \frac{\csc (a+b x)}{(d \cos (a+b x))^{5/2}} \, dx\)

Optimal. Leaf size=81 \[ -\frac{\tan ^{-1}\left (\frac{\sqrt{d \cos (a+b x)}}{\sqrt{d}}\right )}{b d^{5/2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{d \cos (a+b x)}}{\sqrt{d}}\right )}{b d^{5/2}}+\frac{2}{3 b d (d \cos (a+b x))^{3/2}} \]

[Out]

-(ArcTan[Sqrt[d*Cos[a + b*x]]/Sqrt[d]]/(b*d^(5/2))) - ArcTanh[Sqrt[d*Cos[a + b*x]]/Sqrt[d]]/(b*d^(5/2)) + 2/(3
*b*d*(d*Cos[a + b*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0642343, antiderivative size = 81, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.316, Rules used = {2565, 325, 329, 212, 206, 203} \[ -\frac{\tan ^{-1}\left (\frac{\sqrt{d \cos (a+b x)}}{\sqrt{d}}\right )}{b d^{5/2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{d \cos (a+b x)}}{\sqrt{d}}\right )}{b d^{5/2}}+\frac{2}{3 b d (d \cos (a+b x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Csc[a + b*x]/(d*Cos[a + b*x])^(5/2),x]

[Out]

-(ArcTan[Sqrt[d*Cos[a + b*x]]/Sqrt[d]]/(b*d^(5/2))) - ArcTanh[Sqrt[d*Cos[a + b*x]]/Sqrt[d]]/(b*d^(5/2)) + 2/(3
*b*d*(d*Cos[a + b*x])^(3/2))

Rule 2565

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\csc (a+b x)}{(d \cos (a+b x))^{5/2}} \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{1}{x^{5/2} \left (1-\frac{x^2}{d^2}\right )} \, dx,x,d \cos (a+b x)\right )}{b d}\\ &=\frac{2}{3 b d (d \cos (a+b x))^{3/2}}-\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (1-\frac{x^2}{d^2}\right )} \, dx,x,d \cos (a+b x)\right )}{b d^3}\\ &=\frac{2}{3 b d (d \cos (a+b x))^{3/2}}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{1-\frac{x^4}{d^2}} \, dx,x,\sqrt{d \cos (a+b x)}\right )}{b d^3}\\ &=\frac{2}{3 b d (d \cos (a+b x))^{3/2}}-\frac{\operatorname{Subst}\left (\int \frac{1}{d-x^2} \, dx,x,\sqrt{d \cos (a+b x)}\right )}{b d^2}-\frac{\operatorname{Subst}\left (\int \frac{1}{d+x^2} \, dx,x,\sqrt{d \cos (a+b x)}\right )}{b d^2}\\ &=-\frac{\tan ^{-1}\left (\frac{\sqrt{d \cos (a+b x)}}{\sqrt{d}}\right )}{b d^{5/2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{d \cos (a+b x)}}{\sqrt{d}}\right )}{b d^{5/2}}+\frac{2}{3 b d (d \cos (a+b x))^{3/2}}\\ \end{align*}

Mathematica [C]  time = 0.0578965, size = 38, normalized size = 0.47 \[ \frac{2 \, _2F_1\left (-\frac{3}{4},1;\frac{1}{4};\cos ^2(a+b x)\right )}{3 b d (d \cos (a+b x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[a + b*x]/(d*Cos[a + b*x])^(5/2),x]

[Out]

(2*Hypergeometric2F1[-3/4, 1, 1/4, Cos[a + b*x]^2])/(3*b*d*(d*Cos[a + b*x])^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.226, size = 624, normalized size = 7.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(b*x+a)/(d*cos(b*x+a))^(5/2),x)

[Out]

1/6*((24*ln(2/cos(1/2*b*x+1/2*a)*((-d)^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)-d))*d^(7/2)-12*ln(2/(cos(1/2*
b*x+1/2*a)-1)*(d^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)+2*d*cos(1/2*b*x+1/2*a)-d))*(-d)^(1/2)*d^3-12*ln(2/(
cos(1/2*b*x+1/2*a)+1)*(d^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)-2*d*cos(1/2*b*x+1/2*a)-d))*(-d)^(1/2)*d^3)*
sin(1/2*b*x+1/2*a)^4+(-24*ln(2/cos(1/2*b*x+1/2*a)*((-d)^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)-d))*d^(7/2)+
12*ln(2/(cos(1/2*b*x+1/2*a)-1)*(d^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)+2*d*cos(1/2*b*x+1/2*a)-d))*(-d)^(1
/2)*d^3+12*ln(2/(cos(1/2*b*x+1/2*a)+1)*(d^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)-2*d*cos(1/2*b*x+1/2*a)-d))
*(-d)^(1/2)*d^3)*sin(1/2*b*x+1/2*a)^2+6*ln(2/cos(1/2*b*x+1/2*a)*((-d)^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2
)-d))*d^(7/2)+4*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)*d^(5/2)*(-d)^(1/2)-3*ln(2/(cos(1/2*b*x+1/2*a)-1)*(d^(1/2)*
(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)+2*d*cos(1/2*b*x+1/2*a)-d))*(-d)^(1/2)*d^3-3*ln(2/(cos(1/2*b*x+1/2*a)+1)*(d
^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)-2*d*cos(1/2*b*x+1/2*a)-d))*(-d)^(1/2)*d^3)/d^(11/2)/(-d)^(1/2)/(4*s
in(1/2*b*x+1/2*a)^4-4*sin(1/2*b*x+1/2*a)^2+1)/b

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)/(d*cos(b*x+a))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.64093, size = 879, normalized size = 10.85 \begin{align*} \left [\frac{6 \, \sqrt{-d} \arctan \left (\frac{\sqrt{d \cos \left (b x + a\right )} \sqrt{-d}{\left (\cos \left (b x + a\right ) + 1\right )}}{2 \, d \cos \left (b x + a\right )}\right ) \cos \left (b x + a\right )^{2} - 3 \, \sqrt{-d} \cos \left (b x + a\right )^{2} \log \left (\frac{d \cos \left (b x + a\right )^{2} + 4 \, \sqrt{d \cos \left (b x + a\right )} \sqrt{-d}{\left (\cos \left (b x + a\right ) - 1\right )} - 6 \, d \cos \left (b x + a\right ) + d}{\cos \left (b x + a\right )^{2} + 2 \, \cos \left (b x + a\right ) + 1}\right ) + 8 \, \sqrt{d \cos \left (b x + a\right )}}{12 \, b d^{3} \cos \left (b x + a\right )^{2}}, -\frac{6 \, \sqrt{d} \arctan \left (\frac{\sqrt{d \cos \left (b x + a\right )}{\left (\cos \left (b x + a\right ) - 1\right )}}{2 \, \sqrt{d} \cos \left (b x + a\right )}\right ) \cos \left (b x + a\right )^{2} - 3 \, \sqrt{d} \cos \left (b x + a\right )^{2} \log \left (\frac{d \cos \left (b x + a\right )^{2} - 4 \, \sqrt{d \cos \left (b x + a\right )} \sqrt{d}{\left (\cos \left (b x + a\right ) + 1\right )} + 6 \, d \cos \left (b x + a\right ) + d}{\cos \left (b x + a\right )^{2} - 2 \, \cos \left (b x + a\right ) + 1}\right ) - 8 \, \sqrt{d \cos \left (b x + a\right )}}{12 \, b d^{3} \cos \left (b x + a\right )^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)/(d*cos(b*x+a))^(5/2),x, algorithm="fricas")

[Out]

[1/12*(6*sqrt(-d)*arctan(1/2*sqrt(d*cos(b*x + a))*sqrt(-d)*(cos(b*x + a) + 1)/(d*cos(b*x + a)))*cos(b*x + a)^2
 - 3*sqrt(-d)*cos(b*x + a)^2*log((d*cos(b*x + a)^2 + 4*sqrt(d*cos(b*x + a))*sqrt(-d)*(cos(b*x + a) - 1) - 6*d*
cos(b*x + a) + d)/(cos(b*x + a)^2 + 2*cos(b*x + a) + 1)) + 8*sqrt(d*cos(b*x + a)))/(b*d^3*cos(b*x + a)^2), -1/
12*(6*sqrt(d)*arctan(1/2*sqrt(d*cos(b*x + a))*(cos(b*x + a) - 1)/(sqrt(d)*cos(b*x + a)))*cos(b*x + a)^2 - 3*sq
rt(d)*cos(b*x + a)^2*log((d*cos(b*x + a)^2 - 4*sqrt(d*cos(b*x + a))*sqrt(d)*(cos(b*x + a) + 1) + 6*d*cos(b*x +
 a) + d)/(cos(b*x + a)^2 - 2*cos(b*x + a) + 1)) - 8*sqrt(d*cos(b*x + a)))/(b*d^3*cos(b*x + a)^2)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)/(d*cos(b*x+a))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.1396, size = 104, normalized size = 1.28 \begin{align*} \frac{d{\left (\frac{3 \, \arctan \left (\frac{\sqrt{d \cos \left (b x + a\right )}}{\sqrt{-d}}\right )}{\sqrt{-d} d^{3}} - \frac{3 \, \arctan \left (\frac{\sqrt{d \cos \left (b x + a\right )}}{\sqrt{d}}\right )}{d^{\frac{7}{2}}} + \frac{2}{\sqrt{d \cos \left (b x + a\right )} d^{3} \cos \left (b x + a\right )}\right )}}{3 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)/(d*cos(b*x+a))^(5/2),x, algorithm="giac")

[Out]

1/3*d*(3*arctan(sqrt(d*cos(b*x + a))/sqrt(-d))/(sqrt(-d)*d^3) - 3*arctan(sqrt(d*cos(b*x + a))/sqrt(d))/d^(7/2)
 + 2/(sqrt(d*cos(b*x + a))*d^3*cos(b*x + a)))/b